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Temperature Dependent Relaxation Processes 
of an Electronically Excited Nitrosamide 

Sir: 

Irradiation of JV- nitroso-JV- methylacetamide (1) in ben­
zene or methanol with a >400-nm light source caused he­
molysis of the N - N O bond to give the amido radical (3) 
and nitric oxide;' the homolysis occurs in spite of the fact 
that the ground state has partial double bond character due 
to contributions of other polar resonance forms. Flash exci­
tation studies lb have indicated that the photoreaction oc­
curs from the lowest singlet excited state of 1. In contrast 
thermolysis3 of 1 at <100° causes the exclusive intramolec­
ular rearrangement to methyldiazo acetate (5) via rotamer 
4. 
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Figure 1. Schematic potential energy diagram for nitrosamide photo-
reaction. The numbers with asterisks represent the lowest singlet excit­
ed states. 
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Photochemical reactions in which the chemical process 

occurs within a singlet excited manifold are known but 
rather rare.4 '5 For the majority of photochemical reactions, 
the details of the chemical events following the electronic 
excitation are buried in the radiationless transition (elec­
tronic and vibrational relaxations), particularly that of an 
internal conversion during which the energy is converted 
into some form of nuclear motions.6'7 Chemical intuition8 

as well as the mathematical model7 based on a resonance 
interaction have predicted that a radiationless transition is 
biased in favor of the nearest potential energy hypersurface 
of the lower electronic state provided the two states are not 
far apart along the reaction coordinate. With reference to 
the energy profile, Figure 1, this is seen as the transitions of 
*1 —»• A and *2 —• B are more favored than those of *1 —* 
C and *2 —»• A, respectively. Implicit in this argument is 
that a higher energy surface of a ground state pathway 
(e.g., 1 —»• A —* 2),9 which is not accessible by thermolysis, 
may be reached via a radiationless transition from * 1 . At a 
low temperature such a high energy ground state vibronic 
species may be stabilized in a nearby minimum,10 and the 
reaction pathway may be altered depending on temperature 
levels. 

Irradiation of 1 in EtOH-MeOH (9:1) solution kept at 
— 150° with a monochromatic light" '1 2 at 405 nm caused 
decreases in the n —* w* bands of 1 and concurrent emer­
gence of a new set of absorptions at 454, 432, 414, and 396 
nm as in Figure 2. On warming to —90°, the absorptions of 
the intermediates disappeared restoring the original intensi­
ty of 1. However, on subsequent irradiation at — 150° of the 
intermediate with a >430-nm light source, more than 70% 
of the intermediate was irreversibly decomposed and the 
balance of the percentage was restored to 1 as calculated 
from the spectral data. The consecutive biphotonic process 
of the decomposition of 1 at — 150° was further substantiat-
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Figure 2. The uv spectra of the photolysis of NMA (~7 X 10~3 M) in 
EtOH-MeOH (9:1) mixture at -150° with 405 nm narrow band light. 
The spectra were monitored with a Cary 14 spectrophotometer: (a) be­
fore the irradiation, (b) after 28 min irradiation, (c) the uv absorption 
curve of the intermediate isolated from spectrum b with a Du Pont 3 10 
Curve resolver. 

ed by irradiation through a Pyrex filter; a steady state of 
the intermediate absorption bands were observed and 65% 
of the total decrement of 1 decomposed irreversibly. At 25° 
the monochromatic irradiation (405 nm) of 1 resulted in the 
irreversible decomposition in about the same rate as that 
observed in the —150° irradiation suggesting that a mono-
photonic process had superceded in a more energetic envi­
ronment. Preparatively since photodecomposition of 1 in the 
same alcohol solvent at ca. —150° gave the same type of 
products as those observed in the photolysis at room tem­
perature, the primary photochemical process is judged to be 
the same for both cases, i.e., the homolysis of the N - N 
bond. 

The spectroscopic properties of the trapped intermedi­
ate13 is compatible with the unstable rotamer 2. Lack of lu­
minescence"3 of 1 at 770K suggests that the lowest excited 
state *1 preferentially undergoes radiationless transition 
processes.14 The conceptual scheme of Figure 1 indicates 
that a low temperature *1 undertakes a nonvertical radia­
tionless transition14 reaching the vicinity of A from which a 
part relaxes along the new potential energy surface and is 
eventually trapped in the minimum 2. Irradiation of 2 at 
— 150° raises it to the new electronically excited level *2 
from where a radiationless transition imparts a sufficient 
energy to decay along the dissociation potential surface15 as 
in 2* —>- B —*• 3. The transition to the monophotonic process 
at 25° may be simply interpreted that additional vibrational 
energy assists *1 to traverse along the reaction coordinate 
within its lifetime to another point from where it follows a 
nonvertical radiationless transition overcoming the dissocia­
tion energy barrier B. In a broad sense, the observation de­
scribed above is similar to photochromism16 involving a 
metastable intermediate. However, the clear demonstration 
of the transition from biphotonic to monophotonic process 
along the temperature change provides a good deal of infor­
mation on decay processes of the excited states. Obviously 
quantum yield determinations and their temperature depen­
dency may give interesting information on these competing 
decay processes. 
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Synthesis and Resolution of a 
Chiral "Dewar" Benzene 

Sir: 

We have prepared an optically active "Dewar" benzene1 

in order to use chiroptical methods to study quantitatively 
the pathways between valence bond isomers of benzene.1 

This communication reports on the synthesis and resolution 
of l,4,5,6-tetramethyl-3-phenylbicyclo[2.2.0]hexa-2,5-
diene-2-carboxylic acid (1), as well as the conversion of its 
methyl ester 3 to a benzene 5 (thermally) and to a prismane 
42 (photochemically). To our knowledge 1 is the first opti­
cally active derivative of a valence bond isomer of benzene. 

Using essentially van Bekkum's method3 for the synthesis 
of tetramethyl (Dewar phthalates), we have prepared a 
number of chiral "Dewar" benzenes. Thus, when the com­
plex 23 '4 was treated at 0-5° with DMSO in the presence of 
an excess of methyl phenylpropiolate, the monoester 3 was 
obtained in 75% yield (Scheme I). After extensive chroma­
tography,5 pure 3 was obtained and hydrolyzed by boiling 
with a methanolic KOH solution for 7 days. The acid 1 (mp 
172-1780)6 was obtained in 85% yield. Anal. Calcd for 
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